Building and Evaluating a Distributional Memory for Croatian

Jan Šnajder*, Sebastian Padó[†], and Željko Agić[‡]

*University of Zagreb, Faculty of Electrical Engineering and Computing [†]Heidelberg University, Institut für Computerlinguistik [‡]University of Zagreb, Faculty of Humanities and Social Sciences

> The 51st Annual Meeting of the Association for Computational Linguistics Sofia, August 7, 2013

Distributional semantics

- Representation of word meaning based on distributional hypothesis (Harris, 1954):
 - correlation between similarity of words' contexts and words' semantic similarity
 - words represented as vectors of context features
 - semantic similarity predicted via vector similarity
- Distributional semantic models used in many applications (Turney and Pantel, 2010)
- Most models use word-based or syntax-based co-occurrences
- Advantages of syntax-based models:
 - model fine-grained types of semantic similarity
 - capture long-distance contextual relationships
 ⇒ important for free word order languages
 - applicable to various semantic tasks

Distributional memory (DM) (Baroni and Lenci, 2010)

- General, task-independent framework for distributional semantics
- Set of weighted Word-Link-Word triplets obtained from a corpus
 - links can be chosen to model (un)lexicalized dependency relations
- Task-specific sem. spaces obtained by arranging triplets into matrix

• Dependency-based DM for English (Baroni and Lenci, 2010) and German (DM.DE) (Padó and Utt, 2012)

- A challenge, because Croatian is an under-resourced and a morphologically complex language
- Required:
 - good, clean, and large corpus
 - good linguistic preprocessing
- Steps:
 - Corpus preparation
 - 2 Tagging, lemmatization, and parsing
 - 3 Triplet extraction

- Croatian web corpus hrWaC (Ljubešić and Erjavec, 2011)
- Boilerplate removed, but still contains non-parsable content
 - code snippets, encoding errors, non-diacriticized text, foreign-language content (Serbian, Slovenian, English, ...)
- Additional heuristic filtering:
 - website filter: blog/discussion forum content removed
 - 2 document filter: too short, foreign-language
 - sentence filter: too short, non-standard symbols, non-diacriticized, foreign-language
- Filtered corpus fHrWaC: 51M sentences and 1.2G tokens

- \bullet We trained the models on $\rm SETIMES.HR,$ the Croatian part of the SETimes parallel corpus
 - 90K tokens and 4K sentences
 - manually lemmatized and morphologically annotated
 - dependency annotated by Agić and Merkler (2013)
- HunPos tagger (Halácsy et al., 2007)
- CST lemmatizer (Ingason *et al.*, 2008)
- MSTParser dependency parser (McDonald et al., 2006)

		SETIMES.HR	Wikipedia	
HunPos (POS only)	Acc	97.1	94.1	
CST lemmatizer	Acc	97.7	96.5	
MSTParser	LAS	77.5	68.8	

- performance on Wikipedia: cross-domain evaluation
- state of the art performance for Croatian
 - see (Agić and Merkler, 2013) and (Agić et al., 2013) for details

- 10 unlexicalized link types:
 - main dependency relations: Pred, Atr, Adv, Atv, Obj, Prep, Pnom
 - subject subcategorization (Sub_tr/Subj_intr) to account for meaning shift due to verb reflexivization predati (to hand in): (student, Subj_tr, predati) predati se (to surrender): (trupe/troops, Subj_intr, predati)
 - an underspecified Verb link
- 2 lexicalized link types:
 - prepositions: *(mjesto/place, na/on, sunce/sun)*
 - verbs: *(država/state*, **kupiti/buy**, *količina/amount)*
- Triplets scored with local mutual information

LMI
$$(w_1, l, w_2) = f(w_1, l, w_2) \log \frac{P(w_1, l, w_2)}{P(w_1)P(l)P(w_2)}$$

Triplet extraction accuracy

Link		P(%)	R(%)	F_1 (%)
Unlexicalized	Adv	57.3	52.7	54.9
	Atr	85.0	89.3	87.1
	Atv	75.3	70.9	73.1
	Obj	71.4	71.7	71.5
	Pnom	55.7	50.8	53.1
	Pred	81.8	70.6	75.8
	Prep	50.0	28.6	36.4
	Sb_tr	67.8	73.8	70.7
	Sb_intr	64.5	64.8	64.7
	Verb	61.6	73.6	67.1
Lexicalized	Prepositions	67.2	67.9	67.5
	Verbs	61.6	73.6	67.1
All links		73.7	75.5	74.6

DM.HR

- 2.3M lemmas, 121M links and 165K link types
- top-scored (w_1, l, w_2) triplets for $w_1 = kupiti$ (to buy):

w_2	LMI
moći (can _V)	225107
željeti (wish _V)	22049
stan (apartment _N)	19997
cijena (price _N)	18534
kada (when _R)	14408
dionica (share _N)	13720
morati (must _V)	12097
ulaznica (ticket _N)	11126
moguće (possible $_R$)	9669
namjeravati (intend $_V$)	9095
karta (ticket _N)	8936
	w ₂ moći (can _V) željeti (wish _V) stan (apartment _N) cijena (price _N) kada (when _R) dionica (share _N) morati (must _V) ulaznica (ticket _N) moguće (possible _R) namjeravati (intend _V) karta (ticket _N)

. . .

. . .

. . .

Task-based evaluation

• Synonym choice – standard task from distributional semantics

Q: *težak* (*farmer*)

- A:(a) poljoprivrednik (agriculturist)(b) umjetnost (art)(c) radijacija (radiation)(d) bod (point)
 - Dataset: 1,000 question items for nouns, verbs, and adjectives, compiled from a machine readable dictionary (Karan *et al.*, 2012)
 - Model: W×LW
 - Prediction: Cosine similarity
 - Evaluation: Accuracy (%) + Coverage (%)

	Ac	curacy (Coverage (%)			
Model	Ν	А	V	Ν	А	V
DM.HR	70.0	66.3	63.2	99.9	99.1	100
BOW-LSA	67.2	68.9	61.0	100	100	100
BOW baseline	59.9	65.7	55.9	99.9	99.7	100

- Nearly complete coverage
- Outperforms BOW baseline and performs comparable to LSA
- Differences across POSes
 - nouns: well modeled in syntactic space
 - adjectives: less well modeled (mostly occur with Atr links)
 - verbs: poorly modeled in word and syntactic spaces

- DM.HR is a syntax-based DM for Croatian built from a dependency-parsed web corpus
 - first DM for a Slavic language
 - freely available from takelab.fer.hr/dmhr
- Evaluation on synonym choice task
 - $\bullet~{\rm DM}.{\rm HR}$ outperforms BOW, numerically outperforms LSA
- $\bullet~\rm DM.HR$ can be used for a variety of semantic tasks
- Future work
 - better modeling of adjectives and verbs
 - influence of corpus preprocessing/link types

- Agić, v. and Merkler, D. (2013). Three syntactic formalisms for data-driven dependency parsing of Croatian. *Proceedings of TSD 2013, Lecture Notes in Artificial Intelligence*.
- Agić, v., Ljubešić, N., and Merkler, D. (2013). Lemmatization and morphosyntactic tagging of Croatian and Serbian. In *Proceedings of BSNLP* 2013. In press.
- Baroni, M. and Lenci, A. (2010). Distributional memory: A general framework for corpus-based semantics. *Computational Linguistics*, **36**(4), 673–721.
- Halácsy, P., Kornai, A., and Oravecz, C. (2007). HunPos: An open source trigram tagger. In *Proceedings of ACL 2007*, pages 209–212, Prague, Czech Republic.
- Harris, Z. S. (1954). Distributional structure. Word, 10(23), 146-162.
- Ingason, A. K., Helgadóttir, S., Loftsson, H., and Rögnvaldsson, E. (2008). A mixed method lemmatization algorithm using a hierarchy of linguistic identities (HOLI). In *Proceedings of GoTAL*, pages 205–216.

- Karan, M., Šnajder, J., and Dalbelo Bašić, B. (2012). Distributional semantics approach to detecting synonyms in Croatian language. In *Proceedings of the Language Technologies Conference, Information Society*, Ljubljana, Slovenia.
- Ljubešić, N. and Erjavec, T. (2011). hrWaC and slWac: Compiling web corpora for Croatian and Slovene. In *Proceedings of Text, Speech and Dialogue*, pages 395–402, Plzeň, Czech Republic.
- McDonald, R., Lerman, K., and Pereira, F. (2006). Multilingual dependency analysis with a two-stage discriminative parser. In *Proceedings of CoNLL-X*, pages 216–220, New York, NY.
- Padó, S. and Utt, J. (2012). A distributional memory for German. In Proceedings of the KONVENS 2012 workshop on lexical-semantic resources and applications, pages 462–470, Vienna, Austria.
- Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, **37**, 141–188.