Semantic Dependency Graph Parsing
Using Tree Approximations

Željko Agić♣♥ Alexander Koller♥ Stephan Oepen♣♥

♠ Center for Language Technology, University of Copenhagen
♥ Department of Linguistics, University of Potsdam
♣ Department of Informatics, University of Oslo

IWCS 2015, London, 2015-04-17
Dependency tree parsing is not a contradiction.
Dependency tree parsing

Very high accuracy and fast **dependency parsing** is not a contradiction

B. Bohnet - Proceedings of the 23rd International Conference on ..., 2010 - dl.acm.org

Abstract In addition to high accuracy, short **parsing** and training times are the most important properties of a **parser**. However, **parsing** and training times are still relatively long. To determine why, we analyzed the time usage of a **dependency parser**. We illustrate that ...
Dependency *tree* parsing

- it is also a big success story in NLP
 - robust and efficient
 - high accuracy across domains and languages
 - enables cross-lingual approaches
Dependency tree parsing

- it is also a big success story in NLP
 - robust and efficient
 - high accuracy across domains and languages
 - enables cross-lingual approaches

- and it is simple
The simplicity

He walks and talks.
The simplicity

He walks and talks.
The simplicity

He walks and talks.
He walks and talks.
The simplicity

With great speed and accuracy, come great constraints.

- tree constraints
 - single root, single head
 - spanning, connectedness, acyclicity
 - sometimes even projectivity
- there’s been a lot of work beyond that
 - plenty of lexical resources
 - successful semantic role labeling shared tasks
 - algorithms for DAG parsing
- but?
 - it’s apparently *balkanized*, i.e.,
 the representations are not as uniform as in depparsing
Recent efforts

- Banarescu et al. (2013):

 We hope that a sembank of simple, whole-sentence semantic structures will spur new work in statistical natural language understanding and generation, like the Penn Treebank encouraged work on statistical parsing.

- Oepen et al. (2014):

 SemEval semantic dependency parsing (SDP) shared task

 - WSJ PTB text
 - three DAG annotation layers: DM, PAS, PCEDT
 - bilexical dependencies between words
 - disconnected nodes allowed
A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

(b) DELPH-IN Minimal Recursion Semantics–derived bi-lexical dependencies (DM).

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

(c) Enju Predicate–Argument Structures (PAS).

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

(d) Parts of the textogrammatical layer of the Prague Czech-English Dependency Treebank (PCEDT).
SDP 2014 shared task

- uniform, but not the same
- PCEDT seems to be somewhat more distinct
- key ingredients of non-trees
 - singletons
 - reentrancies: indegree > 1
Reentrancies

node indegree

indegree of sources in reentrancy

DM PAS PCEDT

low-hanging fruit?
Reentrancies

Node indegree

Indegree of sources in reentrancy
- DM
- PAS
- PCEDT

Low-hanging fruit?
Hey, these DAGs are very tree-like. Let's convert them to trees and use standard depparsers!
Parsing with tree approximations

GOLD STANDARD

- will
- that
- be
- winner
- is
- highly
- uncertain
- who

LOCAL

- will
- be
- winner
- that
- is
- uncertain
- highly
- who

DFS

- be
- is
- winner
- that
- highly
- uncertain

- gold standard edge
- flipped
- not preserved
Parsing with tree approximations

- flip the flippable, baseline-delete the rest
- train on trees, parse for trees, flip back in post-processing

GOLD STANDARD

LOCAL

DFS

- gold standard edge
- flipped
- not preserved
Parsing with tree approximations

- flip the flippable, baseline-delete the rest
- train on trees, parse for trees, flip back in post-processing

- works OK...ish
 - average labeled F_1 in the high 70s
 - task winner votes between tree approximations
Where do all the lost edges go?

▶ the deleted edges cannot be recovered
▶ upper bound recall
 ▶ graph-tree-graph conversion with no parsing in-between
 ▶ measure the lossiness

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>PCEDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>OFFICIAL</td>
<td>100.00</td>
<td>55.28</td>
</tr>
<tr>
<td>LOCAL</td>
<td>100.00</td>
<td>87.50</td>
</tr>
<tr>
<td>DFS</td>
<td>100.00</td>
<td>97.30</td>
</tr>
</tbody>
</table>

▶ new agenda
 ▶ inspect the lost edges
 ▶ build a better tree approximation on top
Where do all the lost edges go?
Where do all the lost edges go?

- there are *undirected cycles* in the graphs
 - interesting structural properties?
 - discriminate specific phenomena they encode?
Undirected cycles

- we mostly ignore PAS from now on
- DM: 3-word cycles dominate *(triangles)*
- PCEDT: 4-word cycles *(squares)*
- sentences with more than one cycle not very frequent
Undirected cycles

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th></th>
<th></th>
<th>PAS</th>
<th></th>
<th></th>
<th>PCEDT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td></td>
<td>#</td>
<td>%</td>
<td></td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>N V V</td>
<td>3843</td>
<td>29.63</td>
<td></td>
<td>N V V</td>
<td>15541</td>
<td>34.44</td>
<td>CC N N V</td>
<td>4789</td>
</tr>
<tr>
<td>PRP V V</td>
<td>1208</td>
<td>9.31</td>
<td></td>
<td>MD N V</td>
<td>5005</td>
<td>11.09</td>
<td>CC N N N</td>
<td>3418</td>
</tr>
<tr>
<td>N TO V V</td>
<td>1203</td>
<td>9.28</td>
<td></td>
<td>PRP V V</td>
<td>4012</td>
<td>8.89</td>
<td>N N V</td>
<td>2512</td>
</tr>
<tr>
<td>J N V</td>
<td>1059</td>
<td>8.16</td>
<td></td>
<td>J N V</td>
<td>3544</td>
<td>7.85</td>
<td>CC V V V</td>
<td>1633</td>
</tr>
<tr>
<td>IN N V</td>
<td>962</td>
<td>7.42</td>
<td></td>
<td>CC N V V</td>
<td>2155</td>
<td>4.78</td>
<td>CC N V V</td>
<td>1614</td>
</tr>
<tr>
<td>J J N</td>
<td>506</td>
<td>3.90</td>
<td></td>
<td>MD PRP V</td>
<td>1622</td>
<td>3.59</td>
<td>N N N V</td>
<td>805</td>
</tr>
<tr>
<td>CD CD N</td>
<td>324</td>
<td>2.50</td>
<td></td>
<td>IN N V</td>
<td>1087</td>
<td>2.41</td>
<td>N N V V</td>
<td>752</td>
</tr>
<tr>
<td>PRP TO V V</td>
<td>277</td>
<td>2.14</td>
<td></td>
<td>J PRP V</td>
<td>877</td>
<td>1.94</td>
<td>N V V V</td>
<td>665</td>
</tr>
<tr>
<td>J PRP V</td>
<td>228</td>
<td>1.76</td>
<td></td>
<td>CC N N N</td>
<td>676</td>
<td>1.50</td>
<td>, N N N</td>
<td>495</td>
</tr>
<tr>
<td>N N V</td>
<td>202</td>
<td>1.56</td>
<td></td>
<td>CC V V</td>
<td>561</td>
<td>1.24</td>
<td>CC J J N</td>
<td>447</td>
</tr>
</tbody>
</table>

- DM, PAS: mostly control and coordination
- PCEDT: almost exclusively coordination
- supported also by the edge label tuples, and the lemmas
Back to tree approximations

- edge operations up to now
 - *flipping* – comes with implicit *overloading*
 - *deletion* – edges are permanently lost
Back to tree approximations

- edge operations up to now
 - *flipping* – comes with implicit *overloading*
 - *deletion* – edges are permanently lost

- new proposal
 - detect an undirected cycle
 - select and disconnect an appropriate edge
 - *radical*: overload an appropriate label for reconstruction, or
 - *conservative*: trim only a subset of edges using lemma-POS cues
 - in post-processing, reconnect the edge
 - by reading the reconstruction off of the overloaded label, or
 - by detecting the lemma-POS trigger

- we call these operations *trimming* and *untrimming*
Trimming and untrimming
Upper bounds

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>PCEDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>OFFICIAL</td>
<td>100.00</td>
<td>55.28</td>
</tr>
<tr>
<td>LOCAL</td>
<td>100.00</td>
<td>87.50</td>
</tr>
<tr>
<td>DFS</td>
<td>100.00</td>
<td>97.30</td>
</tr>
<tr>
<td>radical trimming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\triangledown + LOCAL</td>
<td>100.00</td>
<td>88.33</td>
</tr>
<tr>
<td>\triangledown + DFS</td>
<td>100.00</td>
<td>98.89</td>
</tr>
<tr>
<td>\square + LOCAL</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>\square + DFS</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>conservative trimming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\triangledown + LOCAL</td>
<td>98.98</td>
<td>87.93</td>
</tr>
<tr>
<td>\triangledown + DFS</td>
<td>99.12</td>
<td>98.07</td>
</tr>
<tr>
<td>\square + LOCAL</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>\square + DFS</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>radical – DFS</td>
<td>0.00</td>
<td>+1.59</td>
</tr>
<tr>
<td>conservative – DFS</td>
<td>-0.88</td>
<td>+0.77</td>
</tr>
</tbody>
</table>
Parsing

- preprocessing: trimming + DFS + baseline = training trees
- training and parsing
 - mate-tools graph-based depparser
 - CRF++ for top node detection
 - SDP companion data and Brown clusters as additional features
- postprocessing: removing baseline artifacts + reflipping +
 + untrimming = output graphs
Results

<table>
<thead>
<tr>
<th></th>
<th>closed track</th>
<th>open track</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DM</td>
<td>PCEDT</td>
</tr>
<tr>
<td></td>
<td>LF</td>
<td>LM</td>
</tr>
<tr>
<td>DFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radical</td>
<td>79.35</td>
<td>9.05</td>
</tr>
<tr>
<td>(\nabla + \text{DFS})</td>
<td>77.73</td>
<td>12.15</td>
</tr>
<tr>
<td>(\square + \text{DFS})</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>conservative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nabla + \text{DFS})</td>
<td>80.05</td>
<td>18.91</td>
</tr>
<tr>
<td>(\square + \text{DFS})</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>radical – DFS</td>
<td>-1.62</td>
<td>3.10</td>
</tr>
<tr>
<td>conservative – DFS</td>
<td>0.70</td>
<td>9.86</td>
</tr>
</tbody>
</table>

- lower upper bounds, higher parsing scores
- nice increase in \(LM\)
- best overall score for any tree approximation-based system
Conclusions

➤ our contributions
 ➤ put SDP DAGs under the lens
 ➤ uncovered the link between non-trees and control, coordination
 ➤ used this to implement a state-of-the-art system based on tree approximations

➤ future work
 ➤ did some more experiments
 ➤ answer set programming for better tree approximations
 ➤ did not see improvements

➤ go for real graph parsing
Thank you for your attention. 😊