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Abstract. The paper presents an investigation 
of functional dependencies in morphosyntactic 
tagging using hidden Markov models. Starting 
from a well known fact that the HMM tagging 
paradigm relies on lexical knowledge acquired 
from training corpora and stored in form of 
transition and emission matrices, also called a 
language model, in the experiment, we apply the 
TnT trigram tagger on creating language models 
for seven different languages from MULTEXT 
East version 3 project translations of George 
Orwell’s novel 1984. – Czech, Estonian, 
Hungarian, Romanian, Serbian, Slovene and 
original English version. We then use these 
language models in the tagging procedure and 
obtain details on various relations between 
training corpora statistics, training outputs and 
outputs of the tagging procedure.

Keywords. language independence, part-of-
speech tagging, morphosyntactic tagging, hidden 
Markov models

1. Introduction 

Hidden Markov models, as described in e.g. 
[6], are today commonly found in natural 
language processing tools as the underlying 
paradigm for part-of-speech/morphosyntactic 
tagging, being proven as reliable, fast and 
yielding high tagging accuracy across various 
languages. A hidden Markov model tagger is 
usually distributed in form of a computer 
program implementing two procedures: training 
and tagging procedure. In course of training, the 
procedure is fed with previously (manually or 
otherwise) tagged corpus, creating from it two 
different matrices of probabilities, called the 
language model. One matrix represents a 
probability for a future tag variable to obtain a 
value tj when it is already known that previous 

value is tj. This matrix is obtained solely by 
counting overall and specific tag occurrences and 
is called the transition probability matrix or the 
n-gram matrix and is usually marked as A.
Matrix dimension is governed by the tagging 
paradigm: a trigram tagger implements a second 
order HMM, looks two previous tags in order to 
predict a future tag and makes the matrix three-
dimensional. The other matrix captures lexical 
data, again by counting event occurrences, 
stating probabilities of symbols (words) being 
emitted upon reaching states (tags). This matrix 
is called the emission probability matrix and 
marked as B. Therefore, language model of a 
HMM contains two basic knowledge figures: 
probabilities of tag sequences occurring and 
probabilities of words being linked to tags. The 
HMM tagging procedure relies solely on this 
knowledge as it is – if we set aside specific 
computational methods used at runtime, such as 
smoothing procedures and unknown word 
handlers – the only property of input language 
known by the tagger. 

So if it is known that matrix A of a trigram 
tagger, containing tag transition counts and 
probabilities, states all occurrences of tag tk
following ti and tj for all tags acquired by the 
training procedure and if matrix B contains 
occurrence counts and probabilities for every 
word-tag pair (wi,tj) found by the training 
procedure, it is safe to claim that overall tagging 
accuracy depends solely on the training 
procedure or specifically on (a) number of words 
acquired on the training corpus and their 
frequencies and (b) number of acquired 
sequences of MSD tag uni-, bi- and trigrams and 
frequencies. 

When combined, these two facts also imply 
another intriguing statement. Being that both 
matrices are created at training and remain 
unchanged throughout the tagging procedure – if 
we ignore a relatively small contribution of 
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smoothing procedures and other runtime calls of 
basic HMM taggers to overall accuracy – we are 
safe to state that tagger accuracy is in fact almost 
completely defined by the training procedure and 
not at runtime, being that all HMM taggers use 
practically the same procedures – Viterbi, linear 
interpolation, suffix tries, successive abstraction, 
deleted interpolation – these contributing only by 
small percentages in implementations of variable 
quality. 

Having stated that overall tagging accuracy is 
produced mainly by the language model given at 
training and therefore implicitly defined by the 
training corpus, i.e. its size (the bigger the 
corpus, the better the lexical structure image for 
a language!) and token-MSD distribution, we set 
off to investigate in detail the various functional 
dependencies between a corpus as a parameter 
and tagging accuracies on known and unknown 
words as output figures. Basically, we consider 
the training corpus size and all its figures as a set 
of variables and observe how changes in these 
variables reflect on tagging accuracy. 

In the course of doing so, we had to choose a 
HMM tagger and training corpora differing in 
size, lexica and tag sets and to define a proper 
testing environment. Resources and tools used in 
the experiment are presented in section 2, the 
experiment plan is laid out in section 3, while 
obtained results and discussion can be found in 
sections 4 and 5 of the paper. 

2. Resources and tools 

PoS/MSD tagger. For the purposes of this 
experiment, we chose the well-known TnT 
trigram tagger [3], implementing the described 
training procedure, Viterbi algorithm, linear 
interpolation as a smoothing paradigm and suffix 
trie, successive abstraction and deleted 
interpolation as unknown word handling 
paradigms. In plain words, TnT is a common and 
commonly used HMM tagger, known for its high 
speed optimization and language independence 
and as such – being a de facto synonym for 
HMM MSD-tagging – it was the most reasonable 
choice. 

Besides training and tagging procedures, the 
TnT software package also contains word 
counting and accuracy measurement tools. This 
has enabled us to produce the entire experiment 
using TnT alone, combined with a small 
contribution in figures provided by additional 
helper tools created for purposes of [1]. 

It should be noted that CroSPoST [2], a 
newly-developed basic HMM tagger just like 
TnT or HunPos [5] – currently available as a 
working beta-version for tagging the Croatian 
language – could have also been used in this 
experiment. However, being in beta-version and 
not yet officially presented to the community nor 
having an intuitive and fast user interface and 
accompanying tools, we decided to hold on to 
TnT for the time being, since our aim was to 
investigate the general properties of HMM 
tagging and not to evaluate specific tools used 
for such investigations. 

Corpora. Having said that corpus figures are 
considered as variables in this experiment, we 
were obliged to provide a set of corpora that 
would create a valid testing environment, i.e. 
produce a significant number of figures. Seven 
translations of Orwell’s novel Nineteen eighty-
four, obtained from the MULTEXT East version 
3 project and MSD tag standard specification [4], 
seemed to us as a reasonable and valid choice. 
The translations provided us with the same 
genre-defined distribution base and language 
specifics created at translation contributed with 
intriguing differences in tag subsets, trigram and 
word distributions. Seven corpora – namely 
Czech, English, Estonian, Hungarian, Romanian, 
Serbian and Slovene, omitting Bulgarian because 
of some character encoding issues that emerged 
during the preparation stage – were extracted 
from the specification, preprocessed for TnT and 
analyzed using helper tools. Basic stats are given 
in figure 2.1. 

Sentence Token Type MSD 
Czech 6752 95828 19117 961 
English 6737 118327 9769 135 
Estonian 6478 90452 17841 410 
Hungarian 6768 98336 20318 405 
Romanian 6520 118289 14803 587 
Serbian 6677 104313 18094 918 
Slovene 6689 107660 17865 1039 

Figure 2.1 Corpora statistics 

We counted sentences, tokens, types and 
different MSDs assigned to tokens. Highest 
counts are marked with bold in the figure, giving 
corpora statistics: Hungarian translation has the 
most sentences and differing tokens while the 
original English version of the novel has the 
highest overall token count and Slovene 
translation was tagged using the highest number 
of different MSD tags. 

We also provide token counts on adjectives, 
nouns, pronouns and verbs, proven to be the 
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most difficult test samples in [1]; details can be 
found in figure 2.2. 

In this figure, part of speech counts are given 
as first elements of corresponding cells and 
different MSDs are provided in brackets: e.g. the 
Czech translation contains 7809 adjectives, 
tagged by 138 different MSD tags from the 
MULTEXT East v3 specification. 

Some notable differences are actually visible 
from the table and they might be called language 
specifics, even from a language independent, 
statistical point of view: Hungarian language had 
by far the highest adjective count, noun 
distribution was similar in all translations and 
Serbian and Slovene had tagged adjectives and 
pronouns using a substantial number of MSDs, 
respectively. 

Adj Noun Pro Verb 

Cze 7809 
 (138) 

19293 
(80) 

11177 
(421) 

16814 
(148)

Eng 7426 
(4) 

21131 
(16) 

11469 
(43) 

21348 
(29) 

Est 
5876 
(47) 

19321 
(44) 

12592 
(165) 

18193 
(98) 

Hun 9530 
(71) 

19972 
(153) 

6475 
(69) 

14542 
(59) 

Rom 
7038 
(29) 

22688 
(34) 

11233 
(96) 

18381 
(58) 

Ser 7668 
(231)

20311 
(158)

9578 
(308) 

22228 
(118) 

Slo 7717 
(167) 

19398 
(74) 

10861 
(594)

25163 
(93) 

Figure 2.2 PoS and MSD distribution 

It could be stated that the choice of corpora 
does not really contribute to the language 
independent point of view in this experiment. 
However, it should be noted that the results 
obtained and described in following sections can 
also be verified in [3], [1] and many other 
experiments with HMM taggers, utilizing 
corpora differing in both genre (e.g. [1] describes 
results obtained from a newspaper corpus), tag 
sets and underlying distributions. Thus, we argue 
that statistical properties provided by previous 
figures indeed do set up a valid testing 
environment with regard to the initial motivation 
of the experiment. Besides that, the content of 
the texts in our corpora is also kept under control 
by using this multilingual parallel corpus. Since 
we have used an English original and its 
translations into other languages, we can state 
that the variations that could be introduced by 
different content are avoided since this is 
virtually the same text in different languages. 
Since all languages will be treated with the same 

tool, any variation observed could, in fact, be 
considered the result of language differences. 

3. Experiment 

Having obtained and prepared the corpora of 
translations, we had to provide a valid testing 
framework. 

Since the general idea initiating this research 
plan was detecting general properties of tagging 
under the HMM paradigm in terms of corpora 
largely effecting overall tagging accuracy, we 
chose not to provide a framework that inspects 
tagging accuracies and then tries to produce 
reasonable improvement suggestions. Instead, we 
intended to create such an environment in which 
we could acknowledge changes in those (overall, 
known & unknown token) accuracies that 
reflected changes in figures of training corpora. 
The framework, however, relies in many ways to 
the one described in [1], but it does not focus on 
tagger. It also considers in more detail a flow of 
these accuracies across languages and their 
figures. 

With regards to dependencies set at section 1, 
the framework could be subdivided into (a) 
inspecting overall and known wordform 
accuracies as a function of lexicon size, i.e. the 
number of tokens acquired to the emission 
probability matrix of the language model at 
training and (b) inspecting overall and unknown 
wordform accuracies as a function of transition 
matrix size and quality in the model. 

It should also be noted that these two test 
frames could be subject to inference and 
pronounced functions of training set size. This is, 
in fact, the foundation of our framework 
construction.  

Namely, we create nine training sets for each 
language, with each of these sets Si containing 
i/10 of the entire corpus. For example, training 
set S7 on Slovene would provide 70% of all 
corpus sentences for the training procedure and 
the remaining 30% of sentences would be 
assigned for testing. This assignment scenario 
ensures us with a fairly large number of 
unknown words, even in the 90% for training vs. 
10% for testing scenario.  

The partitioning was also cross-validated for 
each of the languages in order to ensure a fair 
testing environment. Therefore, we often state 
this setup as the worst case scenario, being that it 
guarantees a large number of unknown words 
detected by default. Some interesting statistics 
are provided in figure 3.1 and 3.2. 
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Note that row values in both figures are given 
as a function of training set size, left out from the 
(virtual) first column. It starts at 10% corpus size 
and moves up to 90% with an iteration step of 
10%; hence the nine value rows in these and 
other figures. Figure 3.1 provides an increase of 
different token encounters and figure 3.2 
presents the same for different MSD tags. 

Cze Eng Est Hun Rom Ser Slo 
3822 2666 3478 3891 3401 3704 3466 
6349 4210 5468 6404 5524 6048 5942 
8618 5268 7799 8694 7279 8186 8205 
10451 6223 9763 10622 8758 10117 9964 
12034 6995 11077 12683 9824 11549 11519 
13961 7632 12586 14437 11039 13216 12971 
15283 8273 14140 16048 12050 14320 14348 
16448 8728 15466 17367 12983 15833 15598 
17844 9309 16637 18936 13936 16997 16695 

Figure 3.1 Type count and training size 

Both functional dependencies are, as 
expected, logarithmic in nature; the law of 
logarithm is in a way a governing force of all 
information science and is by all means expected 
here. It should also be noted that uni-, bi- and 
trigram figures would yield the same distribution 
as tag figures (unigram and tag being the same). 
However, we omit them for practical purposes – 
tags are fewer in number when compared to 
bigrams and trigrams and therefore they fit the 
tight figures perfectly. Also note that training set 
sizes are once again omitted from rows in all the 
figures following these two. 

Cze Eng Est Hun Rom Ser Slo 
527 113 278 224 275 532 571 
635 123 324 273 323 646 680 
703 124 352 304 346 695 760 
772 128 362 331 350 758 848 
812 130 375 348 373 784 871 
849 126 385 364 376 827 918 
881 132 391 373 383 844 949 
905 131 394 387 395 878 989 
927 133 404 395 393 898 1007 

Figure 3.2 Tag count and training size 

The testing procedure proceeds as follows: 

a) For each language and each train vs. test 
partitioning, we create a language model 
using TnT training procedure. This stage 
inputs corpora and provides language models, 
training and testing sets as output. 

b) We apply the models on testing sets – i.e. we 
perform the actual tagging using TnT – and 
produce accuracy info as output. 

c) From these outputs, we assemble token and 
tag counts, accuracy counts on known and 
unknown tokens, overall accuracies, 
properties of n-grams and other facts of 
interest. 

d) We present results in section 4 in a manner 
reflecting our initial questions: we look into 
unknown word accuracies as functions of tag 
and n-gram figures, etc. 

Results are presented and discussed in the 
course of the following two sections. 

4. Results 

The first result we present is straightforward: 
overall tagging accuracy as a function of train set 
size, as presented in figure 4.1. 

Cze Eng Est Hun Rom Ser Slo 
79.84 91.31 83.92 88.19 89.73 76.78 81.83 
82.34 93.49 87.75 91.38 92.94 79.62 85.03 
84.95 94.60 89.54 93.21 93.23 82.39 87.12 
85.81 94.80 91.16 93.94 94.16 83.53 87.34 
87.22 94.96 91.51 94.32 94.69 84.15 88.74 
88.56 95.61 91.92 94.23 95.38 85.26 89.29 
88.29 95.93 92.85 95.04 95.25 85.31 89.28 
88.37 95.47 93.08 95.27 95.37 86.16 89.72 
88.38 96.28 92.87 95.27 95.68 86.09 90.49 

Figure 4.1 Overall accuracy and training set 
size 

In all the test sets, English yields the highest 
accuracies, as expected when reviewing type and 
tag count. This is explained by the fact that 
English possesses the smallest tag subset and 
lexicon, thus the quality of transition and 
emission matrices is the highest in its HMM 
language model. On the other hand, accuracy on 
Czech, Serbian and Slovene is poor from similar 
reasons – large tag sets on highly inflective 
languages make the matrix quality lower with 
respect to English. 

The following two figures – figure 4.2 and 4.3 
– should be considered only when paired with 
figures 3.1 and 3.2, respectively. Namely, figure 
4.2 provides accuracies on known tokens, i.e. 
tokens previously spotted by the training 
procedure and therefore known to the tagger at 
runtime and of course easier to tag. However, in 
terms of research plans, we desired to setup a 
link between accuracies on known tokens and 
numbers of different tokens encountered at 
training. Therefore, each of the cells in figure 4.2 
should be considered as functionally linked with 
a corresponding cell in figure 3.1. 
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Similar to this precondition, each of the cells 
in figure 4.3 is bound by a functional link with a 
corresponding cell in figure 3.2 in order to 
provide an insight on tag encounters reflecting in 
accuracies on unknown words, i.e. those cases in 
which lexical knowledge of a tagger cannot and 
does not affect the tagging. A tag is assigned 
solely by trusting the transition matrix and is 
therefore governed by tag (that is, unigram, 
bigram and trigram – see previous notes on their 
relation) counts. 

All three figures – namely 4.1, 4.2 and 4.3 – 
produce a logarithmic growth of accuracies on 
all languages, indicating that the functional 
dependency really is constructive in such a way 
that it contributes the overall accuracy property 
in a non-deviant manner. 

Cze Eng Est Hun Rom Ser Slo 
89.92 94.82 93.54 97.84 94.49 87.81 91.16 
89.76 95.17 93.95 98.04 95.64 87.76 91.27 
90.40 96.10 94.31 98.19 95.60 89.02 92.05 
90.55 95.99 94.89 98.03 96.18 89.25 91.72 
91.27 96.11 95.07 98.00 96.01 89.07 92.26 
91.85 96.48 94.79 98.26 96.53 89.57 92.40 
91.79 96.52 95.44 97.95 96.45 89.04 91.91 
91.49 96.35 95.29 98.15 96.50 89.87 92.19 
91.54 96.92 95.09 98.16 96.67 89.46 92.86 

Figure 4.2 Known accuracy 

Therefore, we consider that these figures 
prove the existence of a valid, strong and 
constituent functional link between parameters 
and corresponding values. It should also be noted 
that highest accuracy on known tokens is 
achieved on Hungarian, implying that the 
Hungarian lexicon is the most unambiguous one, 
i.e. most of the entries have only one tag 
assigned to them. 

Cze Eng Est Hun Rom Ser Slo 
57.07 71.13 61.18 64.98 71.63 46.05 55.21 
60.60 78.91 69.95 70.81 78.74 49.65 61.33 
64.17 78.48 70.50 76.16 77.81 51.52 63.89 
65.47 78.65 74.63 77.25 78.22 54.58 63.59 
67.59 78.57 74.59 77.48 83.12 56.29 67.94 
69.06 80.90 77.36 75.41 83.51 58.33 68.47 
67.61 83.40 77.76 79.45 82.78 59.36 70.78 
69.45 77.48 79.21 79.24 83.08 58.31 69.84 
67.84 81.24 78.59 78.11 83.22 58.72 71.30 

Figure 4.3 Unknown accuracy 

When considering achieved accuracies on 
different languages as separate values and 
engaging in a comparison, one should note that 
unknown word occurrences differ from one 
language to another, this being a side-effect of 

the random-natured testing framework. Figure 
4.4 provides the unknown word distribution on 
test samples across languages to consider 
accuracy figures in a more correct manner. 

Cze Eng Est Hun Rom Ser Slo 
30.69 14.80 29.72 29.33 20.83 26.41 25.97 
25.44 10.35 25.84 24.42 15.97 21.37 20.85 
20.81 8.53 20.05 22.59 13.29 17.67 17.49 
18.87 6.82 18.43 19.65 11.25 16.49 15.55 
17.09 6.55 17.41 17.94 10.20 15.00 14.45 
14.45 5.59 16.50 17.61 8.82 13.80 13.02 
14.48 4.48 14.66 15.69 8.78 12.58 12.44 
14.12 4.64 13.76 15.22 8.39 11.75 11.04 
13.32 4.08 13.45 14.40 7.39 10.96 10.98 

Figure 4.4 Unknown word occurrences 

These figures provide a new perspective on 
previous accuracy figures: lowest unknown word 
percentages are found on English and Romanian, 
both yielding highest overall results. High results 
on unknown tokens can only be considered in 
previously defined terms and clearly indicate a 
functional relation. 

As a closing word in the results section, it 
should be noted how even the smallest training 
sets – the ones containing only 10 percent of 
corpus sentences – provide a figure of around 
30% of unknown tokens encountered at tagger 
runtime. A bold statement could be derived from 
this fact: being that unknown words do not occur 
at tagger operation as often as known tokens, not 
even when applying the smallest training sets as 
model constructors, it is fairly reasonable and 
straightforward to argue how known word 
accuracies make for a larger share of overall 
accuracy. Furthermore, it could be stated – as a 
sole conclusion of this experiment – that the 
strongest functional dependency, placed upon 
MSD-tagging accuracy using hidden Markov 
models, is the one set by the number of tokens 
encountered during training and known to the 
tagger at runtime. 

5. Conclusions and future work 

Having set up the cross-validation framework 
for testing the differences in application of the 
same HMM MSD-tagging procedure to seven 
different languages, we have shown that the 
HMM trigram taggers, namely TnT, behave the 
same in all cases. We have also shown that, at 
least for the trigram MSD-tagging paradigm, the 
most important and language independent 
parameter that affects the overall accuracy is the 
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size of training corpus that ensures the highest 
number of tokens later known to the tagger. 

Future work directions could be spread in 
several ways: 

a) Providing a framework test case for Croatian 
by including a translation of Orwell’s novel 
into the MULTEXT East v3 corpora set. 
Corpus preparation is in its final stage at the 
moment of writing this report. 

b) Introducing other corpora – genre-specific, 
differing in size and lexical properties – to the 
test, providing a more demanding linguistic 
environment in order to strengthen the claim 
of language independence of HMM tagger, as 
we established it in this experiment. 

c) Including CroSPoST [2] – once it reaches its 
final development stage – and possibly other 
HMM-based taggers such as HunPos [5] in 
the experiment, underlying motivation being 
as in previous direction; providing a high 
correlation figure on various taggers in the 
same testing scenario. 
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