Semantic Dependency Graph Parsing Using Tree Approximations

Željko Agić $^{\bigstar \heartsuit}$ Alexander Koller $^{\heartsuit}$ Stephan Oepen $^{\bigstar \heartsuit}$

◆Center for Language Technology, University of Copenhagen
♡Department of Linguistics, University of Potsdam
◆Department of Informatics, University of Oslo

IWCS 2015, London, 2015-04-17

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Very high accuracy and fast dependency parsing is not a contradiction <u>B Bohnet</u> - Proceedings of the 23rd International Conference on ..., 2010 - dl.acm.org Abstract In addition to a high accuracy, short parsing and training times are the most important properties of a parser. However, parsing and training times are still relatively long. To determine why, we analyzed the time usage of a dependency parser. We illustrate that ... Cited by 252 Related articles All 9 versions Cite Save

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

To determine why, we analyzed the time usage of a **dependency parser**. We illustrate that ... Cited by 252 Related articles All 9 versions Cite Save

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

it is also a big success story in NLP

- robust and efficient
- high accuracy across domains and languages
- enables cross-lingual approaches

To determine why, we analyzed the time usage of a **dependency parser**. We illustrate that ... Cited by 252 Related articles All 9 versions Cite Save

うして ふゆう ふほう ふほう しょうく

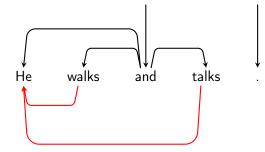
it is also a big success story in NLP

- robust and efficient
- high accuracy across domains and languages
- enables cross-lingual approaches
- and it is simple

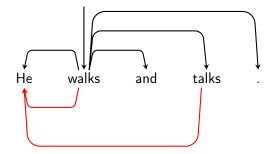
He walks and talks

.

.



<□> <圖> < E> < E> E のQ@



With great speed and accuracy, come great constraints.

tree constraints

- single root, single head
- spanning, connectedness, acyclicity
- sometimes even projectivity
- there's been a lot of work beyond that
 - plenty of lexical resources
 - successful semantic role labeling shared tasks
 - algorithms for DAG parsing
- but?
 - it's apparently *balkanized*, i.e., the representations are not as uniform as in depparsing

うして ふゆう ふほう ふほう うらつ

Recent efforts

Banarescu et al. (2013):

We hope that a sembank of simple, whole-sentence semantic structures will spur new work in statistical natural language understanding and generation, like the Penn Treebank encouraged work on statistical parsing.

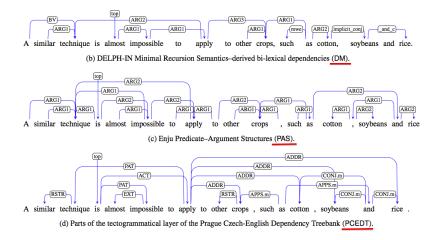
ション ふゆ く 山 マ チャット しょうくしゃ

• Oepen et al. (2014):

SemEval semantic dependency parsing (SDP) shared task

- WSJ PTB text
- three DAG annotation layers: DM, PAS, PCEDT
- bilexical dependencies between words
- disconnected nodes allowed

SDP 2014 shared task



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

SDP 2014 shared task

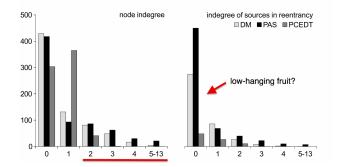
		DM	PAS	PCEDT
(1)	# labels	51	42	68
(2)	% singletons	22.62	4.49	35.79
(3)	# edge density	0.96	1.02	0.99
(4)	\mathcal{M}_{q} trees	2.35	1.30	56.58
(5)	%g projective	3.05	1.71	53.29
(6)	% _q fragmented	6.71	0.23	0.56
(7)	\mathscr{W}_n reentrancies	27.35	29.40	9.27
(8)	\mathscr{M}_{g} topless	0.28	0.02	0.00
(9)	# top nodes	0.9972	0.9998	1.1237
10)	$%_n$ non-top roots	44.71	55.92	4.36

		Directe	ed	Undirected				
	DM	PAS	PCEDT	DM	PAS	PCEDT		
DM	_	.6425	.2612	_	.6719	.5675		
PAS	.6688	_	.2963	.6993	_	.5490		
PCEDT	.2636	.2963	-	.5743	.5630	-		

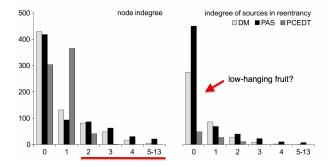
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

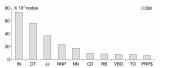
- uniform, but not the same
- PCEDT seems to be somewhat more distinct
- key ingredients of non-trees
 - singletons
 - ▶ reentrancies: *indegree* > 1

Reentrancies



Reentrancies





◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Team	Track	Approach	Resources
Linköping	С	extension of Eisner's algorithm for DAGs, edge-factored structured perceptron	-
Potsdam	C & O	graph-to-tree transformation, Mate	companion
Priberam	C & O	model with second-order features, decoding with dual decom- position, MIRA	companion
Turku	0	cascade of SVM classifiers (dependency recognition, label classification, top recognition)	companion, syntactic n-grams, word2vec
Alpage	C & O	transition-based parsing for DAGs, logistic regression, struc- tured perceptron	companion, Brown clusters
Peking	С	transition-based parsing for DAGs, graph-to-tree transforma- tion, parser ensemble	_
CMU	0	edge classification by logistic regression, edge-factored structured SVM	companion
Copenhagen-Malmö	С	graph-to-tree transformation, Mate	_
In-House	0	existing parsers developed by the organizers	grammars

Hey, these DAGs are very tree-like. Let's convert them to trees and use standard depparsers!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(a)

-

- flip the flippable, baseline-delete the rest
- train on trees, parse for trees, flip back in post-processing

・ロッ ・雪 ・ ・ ヨ ・ ・

-

- flip the flippable, baseline-delete the rest
- train on trees, parse for trees, flip back in post-processing
- ▶ works OK…ish
 - average labeled F_1 in the high 70s
 - task winner votes between tree approximations

Where do all the lost edges go?

- the deleted edges cannot be recovered
- upper bound recall
 - graph-tree-graph conversion with no parsing in-between
 - measure the lossiness

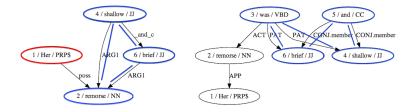
		D	M		PCEDT					
	Р	R	LM	# labels	Р	R	LM	# labels		
OFFICIAL	100.00	55.28	2.54	52	100.00	90.35	54.33	71		
LOCAL	100.00	87.50	17.35	79	100.00	92.33	54.65	124		
DFS	100.00	97.30	65.43	79	100.00	94.03	54.58	133		

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

new agenda

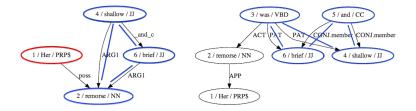
- inspect the lost edges
- build a better tree approximation on top

Where do all the lost edges go?



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

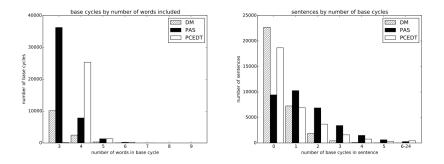
Where do all the lost edges go?



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- there are undirected cycles in the graphs
 - interesting structural properties?
 - discriminate specific phenomena they encode?

Undirected cycles



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- we mostly ignore PAS from now on
- DM: 3-word cycles dominate (triangles)
- PCEDT: 4-word cycles (squares)
- sentences with more than one cycle not very frequent

Undirected cycles

E	M			PAS	PCEDT			
	#	%		#	%		#	%
NVV	3843	29.63	NVV	15541	34.44	CC N N V	4789	17.72
PRP V V	1208	9.31	MD N V	5005	11.09	CC N N N	3418	12.65
N TO V V	1203	9.28	PRP V V	4012	8.89	, N N V	2512	9.29
JNV	1059	8.16	JNV	3544	7.85	CC V V V	1633	6.04
IN N V	962	7.42	CC N V V	2155	4.78	CC N V V	1614	5.97
JJN	506	3.90	MD PRP V	1622	3.59	NNNV	805	2.98
CD CD N	324	2.50	IN N V	1087	2.41	NNVV	752	2.78
PRP TO V V	277	2.14	J PRP V	877	1.94	NVVV	665	2.46
J PRP V	228	1.76	CC N N N	676	1.50	, N N N	495	1.83
NNV	202	1.56	CC V V	561	1.24	CC J J N	447	1.65

- DM, PAS: mostly control and coordination
- PCEDT: almost exclusively coordination
- supported also by the edge label tuples, and the lemmas

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Back to tree approximations

edge operations up to now

flipping – comes with implicit overloading

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

deletion – edges are permanently lost

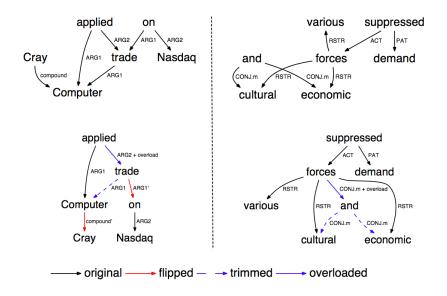
Back to tree approximations

- edge operations up to now
 - flipping comes with implicit overloading
 - deletion edges are permanently lost
- new proposal
 - detect an undirected cycle
 - select and disconnect an appropriate edge
 - radical: overload an appropriate label for reconstruction, or
 - conservative: trim only a subset of edges using lemma-POS cues

ション ふゆ く 山 マ チャット しょうくしゃ

- in post-processing, reconnect the edge
 - by reading the reconstruction off of the overloaded label, or
 - by detecting the lemma-POS trigger
- we call these operations trimming and untrimming

Trimming and untrimming



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Upper bounds

		I	DM		PCEDT					
	Р	R	LM	# labels	P	R	LM	# labels		
OFFICIAL	100.00	55.28	2.54	52	100.00	90.35	54.33	71		
LOCAL	100.00	87.50	17.35	79	100.00	92.33	54.65	124		
DFS	100.00	97.30	65.43	79	100.00	94.03	54.58	133		
radical trimming										
∇ + LOCAL	100.00	88.33	21.07	101	-	-	-	-		
∇ + DFS	100.00	98.89	85.07	154	_	-	-	-		
□ + LOCAL	-	-	-	-	100.00	93.59	56.02	382		
\Box + DFS	-	-	-	-	100.00	95.21	66.33	413		
conservative trimming										
	98.98	87.93	19.66	79	-	-	-	-		
∇ + DFS	99.12	98.07	83.83	79	-	-	-	-		
+ LOCAL	-	-	-	-	98.83	92.88	54.99	124		
\Box + DFS	-	-	-	-	98.96	94.65	65.57	133		
radical – DFS	0.00	+1.59	+19.64	+75	0.00	+1.18	+11.75	+280		
conservative – DFS	-0.88	+0.77	+18.40	0	-1.04	+0.62	+10.99	0		

Parsing

- preprocessing: trimming + DFS + baseline = training trees
- training and parsing
 - mate-tools graph-based depparser
 - CRF++ for top node detection
 - SDP companion data and Brown clusters as additional features

ション ふゆ く 山 マ チャット しょうくしゃ

- postprocessing: removing baseline artifacts + reflipping +
 - + untrimming = output graphs

Results

		closed track							open track						
	DM			PCEDT			DM			PCEDT					
	LF	LM	LAS	LF	LM	LAS	LF	LM	LAS	LF	LM	LAS			
DFS radical	79.35	9.05	78.99	67.92	5.86	81.01	83.00	10.46	84.00	70.24	5.79	85.44			
∇ + DFS	77.73	12.15	75.62	-	-	-	80.56	13.44	80.23	-	-	-			
\Box + DFS conservative	-	-	-	65.33	6.67	77.47	-	-	-	66.14	6.98	83.37			
\bigtriangledown + DFS \Box + DFS	80.05	18.91 -	79.04 -		_ 11.53	_ 81.05	83.55 -	20.01	83.96 -	_ 71.18	_ 12.09	_ 85.53			
radical – DFS conservative – DFS	-1.62 0.70	3.10 9.86	-3.37 +0.05	-2.59 0.90	0.81 5.67	-3.54 +0.04	-2.44 0.55	2.98 9.55	-3.77 -0.04	-4.10 0.94	1.19 6.30	-2.07 0.09			

- Iower upper bounds, higher parsing scores
- nice increase in LM
- best overall score for any tree approximation-based system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusions

- our contributions
 - put SDP DAGs under the lens
 - uncovered the link between non-trees and control, coordination
 - used this to implement a state-of-the-art system based on tree approximations
- future work
 - did some more experiments
 - answer set programming for better tree approximations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- did not see improvements
- go for real graph parsing

Thank you for your attention. \bigcirc